Reihenschaltung |
\( R \, und \, C \) |
\( R \, und \, L \) |
Zeigerdiagramme der Leistungen |
|
|
Scheinleistungen |
$$ S = U \cdot I = \frac{U^2}{Z} = I^2 \cdot Z $$ |
$$ S = U \cdot I = \frac{U^2}{Z} = I^2 \cdot Z $$ |
$$ S = \sqrt{P^2 + Q_C^2} $$ |
$$ S = \sqrt{P^2 + Q_L^2} $$ |
$$ S = \frac{Q_C}{\sin \varphi} $$ |
$$ S = \frac{Q_L}{\sin \varphi} $$ |
$$ S = \frac{P}{\cos \varphi} $$ |
$$ S = \frac{P}{\cos \varphi} $$ |
Wirkleistungen |
$$ P = U_R \cdot I = \frac{U_R^2}{R} = I^2 \cdot R $$ |
$$ P = U_R \cdot I = \frac{U_R^2}{R} = I^2 \cdot R $$ |
$$ P = \sqrt{S^2 – Q_C^2} $$ |
$$ P = \sqrt{S^2 – Q_L^2} $$ |
$$ P = S \cdot \cos \varphi $$ |
$$ P = S \cdot \cos \varphi $$ |
$$ P = \frac{Q_C}{\tan \varphi} $$ |
$$ P = \frac{Q_L}{\tan \varphi} $$ |
Blindleistungen |
$$ Q_C = U_C \cdot I = \frac{U_C^2}{X_C} = I^2 \cdot X_C $$ |
$$ Q_L = U_L \cdot I = \frac{U_L^2}{X_L} = I^2 \cdot X_L $$ |
$$ Q_C = \sqrt{S^2 – P^2} $$ |
$$ Q_L = \sqrt{S^2 – P^2} $$ |
$$ Q_C = S \cdot \sin \varphi $$ |
$$ Q_L = S \cdot \sin \varphi $$ |
$$ Q_C = P \cdot \tan \varphi $$ |
$$ Q_L = P \cdot \tan \varphi $$ |