Parallelschaltung |
\( R \, und \, C \) |
\( R \, und \, L \) |
Zeigerdiagramme der Leistungen |
|
|
Scheinleistungen |
$$ S = U \cdot I = U^2 \cdot Y = \frac{I^2}{Y} $$ |
$$ S = U \cdot I = U^2 \cdot Y = \frac{I^2}{Y} $$ |
$$ S = \sqrt{P^2 + Q_C^2} $$ |
$$ S = \sqrt{P^2 + Q_L^2} $$ |
$$ S = \frac{Q_C}{\sin \varphi} $$ |
$$ S = \frac{Q_L}{\sin \varphi} $$ |
$$ S = \frac{P}{\cos \varphi} $$ |
$$ S = \frac{P}{\cos \varphi} $$ |
Wirkleistungen |
$$ P = U \cdot I_R = U^2 \cdot G = \frac{I_R^2}{G} $$ |
$$ P = U \cdot I_R = U^2 \cdot G = \frac{I_R^2}{G} $$ |
$$ P = \sqrt{S^2 – Q_C^2} $$ |
$$ P = \sqrt{S^2 – Q_L^2} $$ |
$$ P = S \cdot \cos \varphi $$ |
$$ P = S \cdot \cos \varphi $$ |
$$ P = \frac{Q_C}{\tan \varphi} $$ |
$$ P = \frac{Q_L}{\tan \varphi} $$ |
Blindleistungen |
$$ Q_C = U \cdot I_C = U^2 \cdot B_C = \frac{I_R^2}{B_C} $$ |
$$ Q_L = U \cdot I_L = U^2 \cdot B_L = \frac{I_R^2}{B_L} $$ |
$$ Q_C = \sqrt{S^2 – P^2} $$ |
$$ Q_L = \sqrt{S^2 – P^2} $$ |
$$ Q_C = S \cdot \sin \varphi $$ |
$$ Q_L = S \cdot \sin \varphi $$ |
$$ Q_C = P \cdot \tan \varphi $$ |
$$ Q_L = P \cdot \tan \varphi $$ |